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STATIC ANALYSIS

Paul E. Black | US National Institute of Standards and Technology

Just as seat belt use is widespread, static analysis should be part of ethical software development. Because 
security must be designed in, static analysis should occur early in software development to reduce 
vulnerabilities.

N obody plans to crash while driving, but we still 
wear seat belts. Similarly, nobody wants to put 

bugs in code, but static analyzers can save code from 
some catastrophes. Because tools can check millions 
of LOC quickly and repeatably, it seems perfectly rea-
sonable that an ethical soft ware development process 
should include automated analysis tools.

Here, I look at how the Static Analysis Tool Exposi-
tion (SATE) is trying to create a bett er understanding of 
static-analysis tools, encourage their improvement, and 
increase their use.

SATE
In 2007, William Pugh called for large sets of results of 
diff erent static-analysis tools running on the same soft -
ware.1 In response, the Soft ware Assurance Metrics And 
Tool Evaluation project (SAMATE; htt p://samate.
nist.gov) began SATE.2 My SAMATE colleagues and I 
based SATE on the Text Retrieval Conference3—a suc-
cessful program that had been growing and adapting for 
some 17 years.

To being SATE, we chose test cases consisting of 
open source production programs of moderate size 
that had security-relevant aspects. We limited the pro-
gramming languages to C and Java, owing to their wide 

use and the number of static-analysis tools that handle 
them. Participating toolmaker teams ran their tools on 
the test cases and returned the results to us for analysis. 
Our plan was to approximate ground truth by correlat-
ing warnings. We organized a workshop at which every-
one could share their experience and learn from each 
other. We published the data more than six months later 
to give developers time to address any urgent concerns 
that might arise.4

Useful interpretation of this data isn’t simply a mat-
ter of, say, comparing the average number of warnings 
each tool produces. Simplistic bug counting isn’t justi-
fi ed—in fact, bug counting is far more complicated than 
we could have imagined, as I explain later.

Although we made many improvements in the pro-
tocol’s details, all SATEs have followed the same general 
steps. Th e organizers choose test cases, the teams run 
their tools, the organizers analyze the results and hold 
an experience workshop, and the organizers release the 
reports and data.

Improvements and Changes to SATE
We weren’t prepared for the huge number and diver-
sity of warnings that came from the submitt ed results. 
Checking all warnings was completely impractical. In 
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subsequent SATEs, we selected stratified random sam-
ples of warnings to analyze, commissioned expert secu-
rity analysis of some test cases, and correlated warnings 
with the experts’ findings. However, we still weren’t sure 
this constituted a good measure of program security.

Why not use sound static analyzers—for example, 
those using abstract interpretation5—to establish the 
ground truth? For the classes of errors that static analyz-
ers handle, they can prove the complete absence of such 
errors. However, there are many vulnerability classes they 
aren’t programmed to handle. Even a proof that a program 
is a perfect implementation of a specification doesn’t guar-
antee the absence of flaws in the specification. Typically, 
sound static analyzers can’t process huge programs. Also, 
the number of bugs doesn’t necessarily correspond with 
a program’s security: a program with a few serious bugs is 
less secure than a program with many trivial bugs.

In SATE 2010, we chose some test cases based on 
known software vulnerabilities listed in CVE (the 
Common Vulnerabilities and Exposures list; http://
cve.mitre.org). By sifting through information for CVE 
and widely used programs, we identified programs that 
had many security-relevant vulnerabilities at some time. 
We chose programs that had many more vulnerabilities 
than our previous test cases from 2008 and 2009 had.6 

For each program, we looked for an older version that 
had many of the vulnerabilities and a newer version in 
which they were fixed. To attribute locations to a fix, a 
related data-flow path, or a sink (that is, where the data 
leaves the program), we examined descriptions and ref-
erences in CVE, bug-tracking and version control logs, 
and vulnerability notices. We also compared the source 
code of older versions with that of the fixed versions. 
During analysis, we searched for tool warnings that cor-
related with the CVE vulnerabilities. 

Participating teams pointed out that setting up the 
environment to compile large programs is time-con-
suming. This is especially burdensome because SATE 
asked the teams to handle several different programs. 
Toolmakers told us that because they’re familiar with 
the resources their tools need, installing their tools in 
an environment was easier than building a specific envi-
ronment for the test cases. To make it easier for teams, 
in SATE IV (2012), we created a virtual machine with 
an appropriate environment for each test case.

In SATE IV, we added a track for PHP programs. We 
also added approximately 60,000 small, engineered C/
C++ and Java programs as test cases. These programs, 
which compile in Linux, constitute the Juliet test suite, 
part of the SAMATE Reference Dataset (see the sidebar).

Who Needs Graphical Reporting?
To automatically compare warnings, we had teams sub-
mit their reports in a simple XML format comprising

 ■ identifiers;
 ■ one or more traces of locations, such as line number 

and file path;
 ■ the weakness type, which consisted of a name and, 

optionally, a Common Weakness Enumeration 
(CWE; http://cwe.mitre.org) number;

 ■ the severity and likelihood;
 ■ human evaluation; and
 ■ an optional container for whatever constituted the 

original tool output.

While analyzing warnings, we found that using only 
the location and weakness type often made it difficult 
to verify or refute the presence of a weakness and its 
severity. Many tools produce rich, varied sets of infor-
mation—such as variable and function names, the exe-
cution path as a code slice, and conditions—and display 
them graphically. With the toolmakers’ generous help, 
we could sometimes consult this information to under-
stand warnings. We discovered that a GUI and the rich 
information it presents often help users efficiently and 
correctly understand warnings and potential effects.

What We Learned
When we began SATE, we thought a warning simply 
indicated that the tool either found an actual bug or the 
tool made a mistake; “true” or “false” would suffice. That 
was far too simplistic, especially in a largely context-free 
situation such as SATE.

Some weaknesses, such as leftover debug code 
(CWE-489; http://cwe.mitre.org/data/definitions/ 
489.html), aren’t discernible without application 
knowledge. That is, you can’t inspect the program and 
know for sure in every case whether a block of code is 
leftover from debugging or provides essential applica-
tion functionality. The tool might reveal outgoing hard-
coded password weaknesses (CWE-259) if it knows 

The SAMATE Reference Dataset

W e plan to use Static Analysis Tool Exposition results to develop 
reference sets of programs to serve as benchmarks for static 

analyzers. As one step, we created the SAMATE Reference Dataset 
(SRD), a collection of more than 61,000 programs with known weak-
nesses. The SRD, which is publicly accessible (http://samate.nist.gov/
SRD), contains programs mostly in C, C++, and Java. Most of them are 
small, engineered programs, although a few are extractions from open 
source applications. Each has some amount of useful information such 
as location and type of weakness. We’ll draw some of the benchmark 
programs from the SRD.
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widely used libraries, frameworks, and applications—
for example, SQL databases. But does a classic buffer 
overflow (CWE-120) really matter if it might occur 
only at start-up while reading the configuration file 
with a keyword over 10,000 characters long? Should a 
tool report an OS command injection (CWE-78) that’s 
clearly in dead code (which maintenance changes might 
activate someday) or in a function that’s always called 
with safe parameters? Some warnings (for example, 
“strncpy() may not null-terminate” or “use of inherently 
dangerous function CWE-242”) are absolutely correct 
as worded but could be utterly insignificant.

So, warnings have nuances beyond what a simple “true” 
or “false” can express. In 2010, we used five categories: 
true-security, true-quality, true-insignificant, unknown, 
and not a weakness. For example, true-quality means the 
warning is true but relates to code quality, not security. 
Unlike SATE’s attempt to determine absolute truth, devel-
opers use tools to decide what code, if any, to change—
not to decide absolutely whether an attack is possible.

Users should tune their tools by filtering outputs to 
remove low-value warnings, turning off certain checks, 
or turning on others. For instance, a repeated caution 
that “strncpy() may not null-terminate” might be more 
distracting than helpful, even though it’s true. Turning 
off or filtering out classes of warnings that have little 
value for one development style or application area 
generally gives developers more useful warnings. Many 
tools let users write their own checks, which might help, 
depending on the coding style and policies.

Programming style can make it easier or harder 
for tools to find weaknesses. Vadim Okun and his col-
leagues gave an example: “In Nagios [an application for 
host, service, and network monitoring], the return value 
of malloc, strdup, or other memory allocation functions 
is not checked for NULL immediately; instead, it is 
checked for NULL before each use.”4 Checking for null 

at use requires nonlocal analysis, which makes it more 
difficult for a tool or a human to be sure the function 
return is handled properly.

Most Bugs Aren’t Distinct
We wanted to match the same warnings from different 
tools to get an idea of their overlap. Simplistic matching 
assumes that each bug is distinct, but they’re not. Con-
sider the two segments of code from CVE-2010-1773 in 
Figure 1: the first is wrong; the other is fixed. The vari-
able numberShadow should be decremented instead of 
subtracting one from the result of the modulo operation 
(denoted as %). An off-by-one error (CWE-193) led to 
an out-of-bounds read (CWE-125), which led to infor-
mation disclosure (CWE-200). This bug is an example 
of a chain of several weaknesses. One tool might report 
CWE-125, whereas another reports CWE-200.

Confusion could also arise because weaknesses form 
hierarchies. For example, cross-site scripting (CWE-
79) is a subclass of improper input validation (CWE-
20). So, one tool might warn of CWE-79, whereas 
another designates the weakness as CWE-20. These are 
straightforward classification issues.

Precisely attributing the location of vulnerabilities 
or even counting the total number is much more dif-
ficult when vulnerabilities share statements or execu-
tion paths. A good example comes from Nagios. Two 
different functions (see Figures 2a and 2b) remove 
an event from event_list_low, free it, and then 
call reschedule_event() to reschedule it. Lines 
1462 and 2603, where the list was touched, constitute 
two sources or beginnings of data flows. Eventually, 
reschedule_event() passes event_list_low 
to add_event() (see Figure 2c). There, the resched-
uled event is added either at an appropriate place in 
event_list or as the head, if it comes first. The state-
ments adding the event constitute two sinks or termi-
nations of data flows. One tool reported a total of four 
use-after-free (CWE-416) warnings: one warning for 
each path between the two sources and the two sinks.

In another example, from lighttpd (an open source 
Web server), one function was called from dozens of 
places, yielding some 70 warnings. However, a fix could 
be made at just the function. Counting every path as a 
separate weakness doesn’t seem fair.

Are these examples just freakish exceptions? Let’s 
define a weakness as simple if it’s

 ■ associated with only one CWE (not a part of a chain 
or hierarchy),

 ■ attributed to only one statement, and
 ■ distinct from other weaknesses (no intermingled flows).

We estimate that only between one-eighth and one-third 

Figure 1. Pieces of code from CVE-2010-1773 showing a chain of weaknesses. 
The first piece subtracts one, which is off by one in some cases, which leads 
to an out-of-bounds read, which leads to information disclosure. The second 
correctly decrements numberShadow.

while ((numberShadow /= sequenceSize) > 0)
  letters[lettersSize - ++length] =  
      sequence[numberShadow % sequenceSize - 1];

while ((numberShadow /= sequenceSize) > 0)
{
  --numberShadow;
  letters[lettersSize - ++length] =  
      sequence[numberShadow % sequenceSize];
}
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of all weaknesses are simple.4 So, the Nagios and light-
tpd examples are typical.

Even location isn’t always clear. Some CWEs are 
associated with whole regions of code. For instance, 
dead code (CWE-561) and leftover debug code (CWE-
48910) can relate to larger pieces of code. OS command 
injection (CWE-78) might occur when no appropriate 
filtering function occurs anywhere in the path between 
the tainted data source and the sink. Encryption of sen-
sitive data might be entirely missing (CWE-311). In all 
these examples, no group of statements is wrong, so to 
which location should we ascribe the bug?

Tools Find Real Problems
In SATE 2008, 2009, and 2010, we received a com-
bined 128,043 warnings from 17 teams that analyzed 
test cases consisting of 12,468,329 LOC in C, C++, 
and Java. A simplistic examination of the results could 
lead to unwarranted conclusions. What have we learned 
about static-analysis tools?

Tools can find real problems from a wide range of 
weakness classes. In 2008, warnings reported by tools 
included at least 21 of the CWE/SANS (SysAdmin, 
Audit, Network Security) Top 25 Software Errors or 
related CWE IDs. In 2009, about half the manual find-
ings from expert analysis were also reported by tools.

Human review and automated analysis by tools 
complement each other. As Okun and his colleagues 
said, “While human analysis is better for some types 
of weaknesses, such as design and authorization issues, 
tools find weaknesses in many important weakness cat-
egories and can quickly identify and describe in detail 
many weakness instances.”4

So, Which Tool Should I Use?
Just as the choice of biking, driving, taking a bus, or 
walking to a location depends on the traveler’s goals, 
resources, situation, and preferences, the choice of a 
static-analysis tool has many facets. Some tools aim to 
check general code quality; others are security oriented. 
Different users need different balances of the tensions 
between timely processing and precise analysis and 
between receiving a minimal number of low-priority 
warnings and not missing possible flaws.

The number of warnings per thousand lines of code 
(KLOC) varies significantly among applications and 
tools. Over all three SATE events, all tools, and all 
test programs, the minimum was 0.031 warnings per 
KLOC, the maximum was 83, and the median was 4.55. 
The two test cases that had over 1 million LOC had a 
tighter range: the minimum was 0.034 warnings, the 
maximum was 1.33, and the median was 0.33.

Tools generally find different sets of weaknesses. Fig-
ure 3 shows that for all warning classes, the reports of 

different tools had little overlap. For example, over half 
of the warnings we reviewed in SATE 2009 were found 
by only one tool (excluding warnings determined to 
be false). Less than 1 percent of all warnings (exclud-
ing false ones) were found by four tools. For common 
weaknesses such as buffer errors, tools reported the 
same error more often (see Figure 4). As with Figure 3, 
Figure 4 excludes false warnings. Including or excluding 
true-security, true-quality, or true-insignificant warn-
ings doesn’t materially change these observations.

The SATE data can help users select tools that most 
closely match their needs. A user can download the SATE 
data, select warnings from the highest-priority weakness 
classes, and determine which tool or tools more effec-
tively find those weaknesses. This information, combined 
with the languages and frameworks supported, resources 
required, presentation style, and customization options, 
can help users understand tool options.

I n future SATE events, we want to add tracks for 
binary analysis, hybrid (combined static and 

dynamic) tools, and more languages. With such data, 
we could estimate the total number of weaknesses or 
vulnerabilities in a program by capture/recapture sta-
tistical analysis, investigate whether the coincidence of 
warnings implies correctness, and determine how much 
assurance static-analysis tools provide. 
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...
} 
...
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    ...

808 else if(event->run_time < first_event->run_ 
    time){// 43523 43525
    ...
else{
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819          if(temp_event->next==NULL){// 43522  
   43524

(c)
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Figure 3. Of all the warnings reviewed in SATE 2009, 
excluding false warnings, over half were found by only one 
tool. Only three of 370 warnings were found by four tools.
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Figure 4. Overlap between sets of warnings is much higher 
for buffer errors. Over half of the warnings we reviewed, 
excluding false warnings, were reported by at least two tools.
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