
2 May/June 2012 Copublished by the IEEE Computer and Reliability Societies 1540-7993/12/$31.00 © 2012 IEEE

STATIC ANALYSIS

Paul E. Black | US National Institute of Standards and Technology

Just as seat belt use is widespread, static analysis should be part of ethical software development. Because
security must be designed in, static analysis should occur early in software development to reduce
vulnerabilities.

N obody plans to crash while driving, but we still
wear seat belts. Similarly, nobody wants to put

bugs in code, but static analyzers can save code from
some catastrophes. Because tools can check millions
of LOC quickly and repeatably, it seems perfectly rea-
sonable that an ethical soft ware development process
should include automated analysis tools.

Here, I look at how the Static Analysis Tool Exposi-
tion (SATE) is trying to create a bett er understanding of
static-analysis tools, encourage their improvement, and
increase their use.

SATE
In 2007, William Pugh called for large sets of results of
diff erent static-analysis tools running on the same soft -
ware.1 In response, the Soft ware Assurance Metrics And
Tool Evaluation project (SAMATE; htt p://samate.
nist.gov) began SATE.2 My SAMATE colleagues and I
based SATE on the Text Retrieval Conference3—a suc-
cessful program that had been growing and adapting for
some 17 years.

To being SATE, we chose test cases consisting of
open source production programs of moderate size
that had security-relevant aspects. We limited the pro-
gramming languages to C and Java, owing to their wide

use and the number of static-analysis tools that handle
them. Participating toolmaker teams ran their tools on
the test cases and returned the results to us for analysis.
Our plan was to approximate ground truth by correlat-
ing warnings. We organized a workshop at which every-
one could share their experience and learn from each
other. We published the data more than six months later
to give developers time to address any urgent concerns
that might arise.4

Useful interpretation of this data isn’t simply a mat-
ter of, say, comparing the average number of warnings
each tool produces. Simplistic bug counting isn’t justi-
fi ed—in fact, bug counting is far more complicated than
we could have imagined, as I explain later.

Although we made many improvements in the pro-
tocol’s details, all SATEs have followed the same general
steps. Th e organizers choose test cases, the teams run
their tools, the organizers analyze the results and hold
an experience workshop, and the organizers release the
reports and data.

Improvements and Changes to SATE
We weren’t prepared for the huge number and diver-
sity of warnings that came from the submitt ed results.
Checking all warnings was completely impractical. In

Static Analyzers: Seat Belts for Your Code

www.computer.org/security 3

subsequent SATEs, we selected stratified random sam-
ples of warnings to analyze, commissioned expert secu-
rity analysis of some test cases, and correlated warnings
with the experts’ findings. However, we still weren’t sure
this constituted a good measure of program security.

Why not use sound static analyzers—for example,
those using abstract interpretation5—to establish the
ground truth? For the classes of errors that static analyz-
ers handle, they can prove the complete absence of such
errors. However, there are many vulnerability classes they
aren’t programmed to handle. Even a proof that a program
is a perfect implementation of a specification doesn’t guar-
antee the absence of flaws in the specification. Typically,
sound static analyzers can’t process huge programs. Also,
the number of bugs doesn’t necessarily correspond with
a program’s security: a program with a few serious bugs is
less secure than a program with many trivial bugs.

In SATE 2010, we chose some test cases based on
known software vulnerabilities listed in CVE (the
Common Vulnerabilities and Exposures list; http://
cve.mitre.org). By sifting through information for CVE
and widely used programs, we identified programs that
had many security-relevant vulnerabilities at some time.
We chose programs that had many more vulnerabilities
than our previous test cases from 2008 and 2009 had.6

For each program, we looked for an older version that
had many of the vulnerabilities and a newer version in
which they were fixed. To attribute locations to a fix, a
related data-flow path, or a sink (that is, where the data
leaves the program), we examined descriptions and ref-
erences in CVE, bug-tracking and version control logs,
and vulnerability notices. We also compared the source
code of older versions with that of the fixed versions.
During analysis, we searched for tool warnings that cor-
related with the CVE vulnerabilities.

Participating teams pointed out that setting up the
environment to compile large programs is time-con-
suming. This is especially burdensome because SATE
asked the teams to handle several different programs.
Toolmakers told us that because they’re familiar with
the resources their tools need, installing their tools in
an environment was easier than building a specific envi-
ronment for the test cases. To make it easier for teams,
in SATE IV (2012), we created a virtual machine with
an appropriate environment for each test case.

In SATE IV, we added a track for PHP programs. We
also added approximately 60,000 small, engineered C/
C++ and Java programs as test cases. These programs,
which compile in Linux, constitute the Juliet test suite,
part of the SAMATE Reference Dataset (see the sidebar).

Who Needs Graphical Reporting?
To automatically compare warnings, we had teams sub-
mit their reports in a simple XML format comprising

 ■ identifiers;
 ■ one or more traces of locations, such as line number

and file path;
 ■ the weakness type, which consisted of a name and,

optionally, a Common Weakness Enumeration
(CWE; http://cwe.mitre.org) number;

 ■ the severity and likelihood;
 ■ human evaluation; and
 ■ an optional container for whatever constituted the

original tool output.

While analyzing warnings, we found that using only
the location and weakness type often made it difficult
to verify or refute the presence of a weakness and its
severity. Many tools produce rich, varied sets of infor-
mation—such as variable and function names, the exe-
cution path as a code slice, and conditions—and display
them graphically. With the toolmakers’ generous help,
we could sometimes consult this information to under-
stand warnings. We discovered that a GUI and the rich
information it presents often help users efficiently and
correctly understand warnings and potential effects.

What We Learned
When we began SATE, we thought a warning simply
indicated that the tool either found an actual bug or the
tool made a mistake; “true” or “false” would suffice. That
was far too simplistic, especially in a largely context-free
situation such as SATE.

Some weaknesses, such as leftover debug code
(CWE-489; http://cwe.mitre.org/data/definitions/
489.html), aren’t discernible without application
knowledge. That is, you can’t inspect the program and
know for sure in every case whether a block of code is
leftover from debugging or provides essential applica-
tion functionality. The tool might reveal outgoing hard-
coded password weaknesses (CWE-259) if it knows

The SAMATE Reference Dataset

W e plan to use Static Analysis Tool Exposition results to develop
reference sets of programs to serve as benchmarks for static

analyzers. As one step, we created the SAMATE Reference Dataset
(SRD), a collection of more than 61,000 programs with known weak-
nesses. The SRD, which is publicly accessible (http://samate.nist.gov/
SRD), contains programs mostly in C, C++, and Java. Most of them are
small, engineered programs, although a few are extractions from open
source applications. Each has some amount of useful information such
as location and type of weakness. We’ll draw some of the benchmark
programs from the SRD.

4 IEEE Security & Privacy May/June 2012

STATIC ANALYSIS

widely used libraries, frameworks, and applications—
for example, SQL databases. But does a classic buffer
overflow (CWE-120) really matter if it might occur
only at start-up while reading the configuration file
with a keyword over 10,000 characters long? Should a
tool report an OS command injection (CWE-78) that’s
clearly in dead code (which maintenance changes might
activate someday) or in a function that’s always called
with safe parameters? Some warnings (for example,
“strncpy() may not null-terminate” or “use of inherently
dangerous function CWE-242”) are absolutely correct
as worded but could be utterly insignificant.

So, warnings have nuances beyond what a simple “true”
or “false” can express. In 2010, we used five categories:
true-security, true-quality, true-insignificant, unknown,
and not a weakness. For example, true-quality means the
warning is true but relates to code quality, not security.
Unlike SATE’s attempt to determine absolute truth, devel-
opers use tools to decide what code, if any, to change—
not to decide absolutely whether an attack is possible.

Users should tune their tools by filtering outputs to
remove low-value warnings, turning off certain checks,
or turning on others. For instance, a repeated caution
that “strncpy() may not null-terminate” might be more
distracting than helpful, even though it’s true. Turning
off or filtering out classes of warnings that have little
value for one development style or application area
generally gives developers more useful warnings. Many
tools let users write their own checks, which might help,
depending on the coding style and policies.

Programming style can make it easier or harder
for tools to find weaknesses. Vadim Okun and his col-
leagues gave an example: “In Nagios [an application for
host, service, and network monitoring], the return value
of malloc, strdup, or other memory allocation functions
is not checked for NULL immediately; instead, it is
checked for NULL before each use.”4 Checking for null

at use requires nonlocal analysis, which makes it more
difficult for a tool or a human to be sure the function
return is handled properly.

Most Bugs Aren’t Distinct
We wanted to match the same warnings from different
tools to get an idea of their overlap. Simplistic matching
assumes that each bug is distinct, but they’re not. Con-
sider the two segments of code from CVE-2010-1773 in
Figure 1: the first is wrong; the other is fixed. The vari-
able numberShadow should be decremented instead of
subtracting one from the result of the modulo operation
(denoted as %). An off-by-one error (CWE-193) led to
an out-of-bounds read (CWE-125), which led to infor-
mation disclosure (CWE-200). This bug is an example
of a chain of several weaknesses. One tool might report
CWE-125, whereas another reports CWE-200.

Confusion could also arise because weaknesses form
hierarchies. For example, cross-site scripting (CWE-
79) is a subclass of improper input validation (CWE-
20). So, one tool might warn of CWE-79, whereas
another designates the weakness as CWE-20. These are
straightforward classification issues.

Precisely attributing the location of vulnerabilities
or even counting the total number is much more dif-
ficult when vulnerabilities share statements or execu-
tion paths. A good example comes from Nagios. Two
different functions (see Figures 2a and 2b) remove
an event from event_list_low, free it, and then
call reschedule_event() to reschedule it. Lines
1462 and 2603, where the list was touched, constitute
two sources or beginnings of data flows. Eventually,
reschedule_event() passes event_list_low
to add_event() (see Figure 2c). There, the resched-
uled event is added either at an appropriate place in
event_list or as the head, if it comes first. The state-
ments adding the event constitute two sinks or termi-
nations of data flows. One tool reported a total of four
use-after-free (CWE-416) warnings: one warning for
each path between the two sources and the two sinks.

In another example, from lighttpd (an open source
Web server), one function was called from dozens of
places, yielding some 70 warnings. However, a fix could
be made at just the function. Counting every path as a
separate weakness doesn’t seem fair.

Are these examples just freakish exceptions? Let’s
define a weakness as simple if it’s

 ■ associated with only one CWE (not a part of a chain
or hierarchy),

 ■ attributed to only one statement, and
 ■ distinct from other weaknesses (no intermingled flows).

We estimate that only between one-eighth and one-third

Figure 1. Pieces of code from CVE-2010-1773 showing a chain of weaknesses.
The first piece subtracts one, which is off by one in some cases, which leads
to an out-of-bounds read, which leads to information disclosure. The second
correctly decrements numberShadow.

while ((numberShadow /= sequenceSize) > 0)
 letters[lettersSize - ++length] =
 sequence[numberShadow % sequenceSize - 1];

while ((numberShadow /= sequenceSize) > 0)
{
 --numberShadow;
 letters[lettersSize - ++length] =
 sequence[numberShadow % sequenceSize];
}

www.computer.org/security 5

of all weaknesses are simple.4 So, the Nagios and light-
tpd examples are typical.

Even location isn’t always clear. Some CWEs are
associated with whole regions of code. For instance,
dead code (CWE-561) and leftover debug code (CWE-
48910) can relate to larger pieces of code. OS command
injection (CWE-78) might occur when no appropriate
filtering function occurs anywhere in the path between
the tainted data source and the sink. Encryption of sen-
sitive data might be entirely missing (CWE-311). In all
these examples, no group of statements is wrong, so to
which location should we ascribe the bug?

Tools Find Real Problems
In SATE 2008, 2009, and 2010, we received a com-
bined 128,043 warnings from 17 teams that analyzed
test cases consisting of 12,468,329 LOC in C, C++,
and Java. A simplistic examination of the results could
lead to unwarranted conclusions. What have we learned
about static-analysis tools?

Tools can find real problems from a wide range of
weakness classes. In 2008, warnings reported by tools
included at least 21 of the CWE/SANS (SysAdmin,
Audit, Network Security) Top 25 Software Errors or
related CWE IDs. In 2009, about half the manual find-
ings from expert analysis were also reported by tools.

Human review and automated analysis by tools
complement each other. As Okun and his colleagues
said, “While human analysis is better for some types
of weaknesses, such as design and authorization issues,
tools find weaknesses in many important weakness cat-
egories and can quickly identify and describe in detail
many weakness instances.”4

So, Which Tool Should I Use?
Just as the choice of biking, driving, taking a bus, or
walking to a location depends on the traveler’s goals,
resources, situation, and preferences, the choice of a
static-analysis tool has many facets. Some tools aim to
check general code quality; others are security oriented.
Different users need different balances of the tensions
between timely processing and precise analysis and
between receiving a minimal number of low-priority
warnings and not missing possible flaws.

The number of warnings per thousand lines of code
(KLOC) varies significantly among applications and
tools. Over all three SATE events, all tools, and all
test programs, the minimum was 0.031 warnings per
KLOC, the maximum was 83, and the median was 4.55.
The two test cases that had over 1 million LOC had a
tighter range: the minimum was 0.034 warnings, the
maximum was 1.33, and the median was 0.33.

Tools generally find different sets of weaknesses. Fig-
ure 3 shows that for all warning classes, the reports of

different tools had little overlap. For example, over half
of the warnings we reviewed in SATE 2009 were found
by only one tool (excluding warnings determined to
be false). Less than 1 percent of all warnings (exclud-
ing false ones) were found by four tools. For common
weaknesses such as buffer errors, tools reported the
same error more often (see Figure 4). As with Figure 3,
Figure 4 excludes false warnings. Including or excluding
true-security, true-quality, or true-insignificant warn-
ings doesn’t materially change these observations.

The SATE data can help users select tools that most
closely match their needs. A user can download the SATE
data, select warnings from the highest-priority weakness
classes, and determine which tool or tools more effec-
tively find those weaknesses. This information, combined
with the languages and frameworks supported, resources
required, presentation style, and customization options,
can help users understand tool options.

I n future SATE events, we want to add tracks for
binary analysis, hybrid (combined static and

dynamic) tools, and more languages. With such data,
we could estimate the total number of weaknesses or
vulnerabilities in a program by capture/recapture sta-
tistical analysis, investigate whether the coincidence of
warnings implies correctness, and determine how much
assurance static-analysis tools provide.

References
1. W. Pugh, “Judging the Value of Static Analyis,” keynote

address at Static Analysis Summit II, 2007; www.cs.umd.
edu/~pugh/JudgingStaticAnalysis.pdf.

2. V. Okun, A. Delaitre, and P.E. Black, “The Third Static
Analysis Tool Exposition (SATE 2010),” NIST special

publication 500-283, US Dept. of Commerce, Sept. 2011,
pp. 4–40; http://samate.nist.gov/docs/NIST_Special
_Publication_500-283.pdf.

3. E.M. Voorhees and D.K. Harman, eds., TREC: Experiment
and Evaluation in Information Retrieval, MIT Press, 2008.

4. V. Okun, R. Gaucher, and P.E. Black, “Static Analysis
Tool Exposition (SATE) 2008,” NIST special pub-
lication 500-279, US Dept. of Commerce, June 2009,
pp. 4–37; http://samate.nist.gov/docs/NIST_Special
_Publication_500-279.pdf.

Figure 2. Code for Nagios (an application for host, service, and network
monitoring) shows intermingled data flows (a) The application finds an event
(line 1462), which is the source (beginning) of one data flow. The application
removes the event from the list, frees it, and reschedules it, calling add_
event(). (b) This pattern repeats (line 2603), which is the second data-flow
source. (c) The data flows end at one sink (line 808) or another (line 819). Four
paths exist—one from each source to each sink.

1462 for (temp_event=event_list_low;temp_
event;temp_event=temp_event->next){

...
}
...
remove_event(temp_event,&event_list_low);
free(temp_event);
...
reschedule_event(new_event,&event_list_low);

(a)

2603 for (temp_event=event_list_low;temp_
 event;temp_event=temp_event->next){
...
}
...
remove_event(temp_event,&event_list_low);
free(temp_event);
...
reschedule_event(new_event,&event_list_low);

(b)

add_event(...,timed_event **event_list){
 first_event = *event_list;
 ...

808 else if(event->run_time < first_event->run_
 time){// 43523 43525
 ...
else{
 temp_event = *event_list;
 while(temp_event!=NULL){

819 if(temp_event->next==NULL){// 43522
 43524

(c)

6 IEEE Security & Privacy May/June 2012

STATIC ANALYSIS

5. “Code Verification and Run-Time Error Detection through
Abstract Interpretation,” white paper, MathWorks, 2007;
www.mathworks.com/tagteam/42825_white_paper
_abstract_interpretation.pdf.

6. V. Okun, A. Delaitre, and P.E. Black, eds., The Second
Static Analysis Tool Exposition (SATE) 2009, NIST
special publication 500-287, US Dept. of Commerce,
June 2010; http://samate.nist.gov/docs/NIST_Special
_Publication_500-287.pdf.

Paul E. Black is a computer scientist for the US National
Institute of Standards and Technology and leads the
SAMATE (Software Assurance Metrics And Tool
Evaluation) project. His research interests include
algorithms and data structures, formal methods,
assuring software quality, and static analysis of pro-
grams. Black has a PhD from Brigham Young Univer-
sity’s Computer Science Department. He’s a member
of IEEE, the IEEE Computer Society, and ACM.
Contact him at paul.black@nist.gov.

Figure 3. Of all the warnings reviewed in SATE 2009,
excluding false warnings, over half were found by only one
tool. Only three of 370 warnings were found by four tools.

3
40

120 207

1 tool

2 tools

3 tools

4 tools

Figure 4. Overlap between sets of warnings is much higher
for buffer errors. Over half of the warnings we reviewed,
excluding false warnings, were reported by at least two tools.

1 tool

2 tools

3 tools

4 tools

